Paraphrase Identification as Probabilistic Quasi-Synchronous Recognition
نویسندگان
چکیده
We present a novel approach to deciding whether two sentences hold a paraphrase relationship. We employ a generative model that generates a paraphrase of a given sentence, and we use probabilistic inference to reason about whether two sentences share the paraphrase relationship. The model cleanly incorporates both syntax and lexical semantics using quasi-synchronous dependency grammars (Smith and Eisner, 2006). Furthermore, using a product of experts (Hinton, 2002), we combine the model with a complementary logistic regression model based on state-of-the-art lexical overlap features. We evaluate our models on the task of distinguishing true paraphrase pairs from false ones on a standard corpus, giving competitive state-of-the-art performance.
منابع مشابه
Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملA Meta-Level Grammar: Rede ning Synchronous TAG for Translation and Paraphrase
In applications such as translation and paraphrase, operations are carried out on grammars at the meta level. This paper shows how a meta-grammar, deening structure at the meta level, is useful in the case of such operations; in particular , how it solves problems in the current deenition of Synchronous TAG (Shieber, 1994) caused by ignoring such structure in mapping between grammars, for appli...
متن کاملSemantic Parsing of Ambiguous Input through Paraphrasing and Verification
We propose a new method for semantic parsing of ambiguous and ungrammatical input, such as search queries. We do so by building on an existing semantic parsing framework that uses synchronous context free grammars (SCFG) to jointly model the input sentence and output meaning representation. We generalize this SCFG framework to allow not one, but multiple outputs. Using this formalism, we constr...
متن کاملiSTART: Paraphrase Recognition
Paraphrase recognition is used in a number of applications such as tutoring systems, question answering systems, and information retrieval systems. The context of our research is the iSTART reading strategy trainer for science texts, which needs to understand and recognize the trainee’s input and respond appropriately. This paper describes the motivation for paraphrase recognition and develops ...
متن کاملApplication of Radial Basis Neural Networks in Fault Diagnosis of Synchronous Generator
This paper presents the application of radial basis neural networks to the development of a novel method for the condition monitoring and fault diagnosis of synchronous generators. In the proposed scheme, flux linkage analysis is used to reach a decision. Probabilistic neural network (PNN) and discrete wavelet transform (DWT) are used in design of fault diagnosis system. PNN as main part of thi...
متن کامل